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In this supplement, we provide all the information that was omitted from the main text due to lack of space.

1 Mixed Strategies
In Section 3 of the paper, we claimed that mixed strategies can also be modeled using the pure strategy variables. In
our model, we had two effort strategies (pure) ei = 0 (no effort) or ei = 1 (full effort). If the worker does not invest
effort, her reporting strategy ~Si is any probabilistic vector. If the worker does invest effort, her reporting strategy is a
row stochastic matrix Si.

A mixed effort strategy is the one in which a worker chooses to invest effort only with a probability q and doesn’t
invest effort with probability 1 − q. A mixed reporting strategy is one in which worker can probabilistically choose
among different reporting strategies (vectors ~Si or matrices Si). In either case, we can write the strategy of the worker
as a convex combination of the pure strategies. For example, consider ternary answers space (K = 3) and a worker
who is truthful with probability 0.5 and plays a heuristic strategy of always reporting 0 otherwise. The mixed reporting
strategy of the worker is given by

Si = 0.5 ·

1 0 0
0 1 0
0 0 1

+ 0.5

1 0 0
1 0 0
1 0 0


The uniform strategy space that we considered for multi-task settings includes these mixed strategies as long as the

mixed strategy remains same on all tasks. This means that workers can probabilistically switch between pure strategies
in multi-task settings but we don’t consider the settings, in which workers swtich based on the task properties. This
possibility is correctly ruled out in the literature by assuming that the tasks have similar properties so that workers
can’t choose a distinct strategy based on certain task property.

2 Solving Linear System of Equations
In Section 4 of the paper, we proposed a transitive method of calculating the unknown trustworthiness of worker. This
required solving a linear system of Equations and required the coefficient matrix to have linearly independent rows.

As an example, consider the binary answer space (K = 2). If Tj [1, 1] + Tj [2, 2] 6= 1, solving the system of
Equations gives the following,

Ti[1, 1] =
b · ω(yi = 1|yj = 1)− (1− a) · ω(yi = 1|yj = 2)

ab− (1− a)(1− b)

Ti[2, 2] = 1− a · ω(yi = 1|yj = 2)− (1− b) · ω(yi = 1|yj = 1)

ab− (1− a)(1− b)

where, a =
Tj [1,1]·P (1)
ω(yj=1) and b = Tj [2,2]·P (2)

ω(yj=2) .
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Ti[1, 1] and Ti[2, 2] together define the trustworthiness matrix of i in binary answer space. For non-binary case
also, similar closed form expression can be derived. In practice, many libraries are available to solve system of linear
equations efficiently. We used the numpy.linalg library in Python for this purpose. It may be noted that the requirement
for this estimation method to work in binary answer spaces (K = 2) is weaker than the general case (K > 2). It only
requires that the reports of the peer j are not independent of the ground truth (Tj [1, 1] + Tj [2, 2] 6= 1 =⇒ Tj [1, 1] 6=
Tj [2, 1] =⇒ Tj [2, 2] 6= Tj [1, 2]). As long as the reports of peer j have some correlation with the ground truth, we
can estimate the trustworthiness matrix of worker i in binary answer space. For the general case, the requirement is
explained in the paper (posterior distributions should not be identical for any two possible answers of the peer).

3 Missing Proofs

3.1 Proof of Lemma 1
Proof. Let’s first write the expression for the probability P (Yj = yj |Yi = yi) by applying Bayes’ rule.

P (Yj = yj |Yi = yi) =
∑
g∈[K]

P (Yj = yj , G = g|Yi = yi)

=
∑
g∈[K]

P (Yj = yj |G = g, Yi = yi) · P (G = g|Yi = yi)

Since answers of i and j are conditionally independent given the ground truth, we have P (Yj = yj |G = g, Yi =
yi) = P (Yj = yj |G = g). This gives the following:

P (Yj = yj |Yi = yi) =
∑
g∈[K]

P (Yj = yj |G = g) · P (G = g|Yi = yi)

Now we apply the Bayes’ rule again and expand the term P (G = g|Yj = yj). This gives:

P (Yj = yj |Yi = yi) =
∑
g∈[K]

P (Yi = yi|G = g) · P (Yj = yj |G = g) · P (G = g)

P (Yj = yj)

Note that P (Yi = yi|G = g) = Ti[g, yi] and P (Yj = yj |G = g) = Tj [g, yj ]. We thus get,

P (Yj = yj |Yi = yi) =
∑
g∈[K]

Ti[g, yi] ·
Tj [g, yj ] · P (G = g)

P (Yj = yj)

Assuming |Qi ∩Qj | → ∞, we now use the law of large numbers and the continuous mapping theorem to replace
P (Yj = yj |Yi = yi) with empirical distribution ω(Yj = yj |Yi = yi) and P (Yj = yj) with empirical distribution
ω(Yj = yj). This finally gives,

ω(Yi = yi|Yj = yj) =
∑

k∈[K]

Ti[g, yi] ·
(Tj [k, yj ] · P (k)

ω(Yj = yj)

)
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3.2 Proof of Theorem 1
Proof. As |Qi ∩Qj | → ∞, using lemma 1, the reward R′i of any worker i in the Deep Bayesian Trust Mechanism is
given by :

R′i = β
[( ∑

k∈[K]

Ti[k, k]
)
− 1
]

= β
[( ∑

k∈[K]

∑
m∈[K]

Ai[k,m]Si[m, k]
)
− 1
]

(Using Proposition 1)

For binary answer space (K = 2), this can be expanded as :

Ri = β
[
Ai[1, 1]Si[1, 1] +Ai[1, 2]Si[2, 1] +Ai[2, 1]Si[1, 2] +Ai[2, 2]Si[2, 2]− 1

]
Rearranging the terms,

Ri = β
[[
Ai[1, 1]Si[1, 1] +Ai[2, 1]Si[1, 2]

]
+
[
Ai[1, 2]Si[2, 1] +Ai[2, 2]Si[2, 2]

]
− 1
]

Assuming Ai[1, 1] +Ai[2, 2] > 1s, we get that Ai[1, 1] > Ai[2, 1] and Ai[2, 2] > Ai[1, 2].

Now, note that
[
Ai[1, 1]Si[1, 1]+Ai[2, 1]Si[1, 2]

]
is a convex combination ofAi[1, 1] andAi[1, 2] with Si[1, 1] and

Si[2, 1] being the convex coefficients. Since Ai[1, 1] > Ai[2, 1], this convex sum is maximized by using Si[1, 1] = 1
and Si[1, 2] = 0. A similar argument follows for the second independent term in the reward. Thus, the total reward is
maximized by the identity strategy matrix. The reward with Si = I is thus,

Ri = β
[
Ai[1, 1] +Ai[2, 2]− 1

]
which is strictly positive.

The above analysis implies that whenever worker does solve the tasks, it is her best reporting strategy to report
the answer as they are. Now we just need to ensure that investing effort is also the best effort strategy. If the worker
doesn’t invest effort and report heuristically, the value of the term

( ∑
k∈[K]

Ti[k, k]
)
− 1 is 0. This will be proved in the

proof of Theorem 2. However, the worker saves the cost of effort too in this case and she neither earns anything nor
loses anything. But when worker invest effort, she earns R′i from the mechanism and loses CE in the form of cost of
effort. For truthful strategy (ei = 1, Si = I) to be the dominant uniform strategy, we need the following condition:

β
[
Ai[1, 1] +Ai[2, 2]− 1

]
− CE > 0

This is true when

β >
CE

Ai[1, 1] +Ai[2, 2]− 1

For non-binary answer space (K > 2), the proof follows similarly assuming Ai[k, k] > Ai[k
′, k], ∀k′ 6=

k. The reward for truthful strategy is R′i = β
[ ∑
k∈[K]

Ai[k, k] − 1
]

which is also strictly positive under the same

assumption.

3.3 Proof of Theorem 2
Proof. As |Qi ∩Qj | → ∞, using lemma 1, the reward Ri of any worker i in the Deep Bayesian Trust Mechanism is
given by :

R′i = β
[( ∑

k∈[K]

Ti[k, k]
)
− 1
]
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We know that a worker’s strategy is called heuristic if either ei = 0 or ei = 1 and Si has identical rows. In both cases,
it is easy to see (using Proposition 1) that the sum of diagonal entries of her trustworthiness matrix sum to 1, which
implies, ( ∑

k∈[K]

Ti[k, k]
)
− 1 = 1− 1 = 0

3.4 Proof of Theorem 3
Proof. The proof follows from Lemma 1, which ensures that reward of worker i converges in the limit to

β ·
( ∑

k∈[K]

Ti[k, k]
)
− 1

By definition, Ti[k, k],∀k ∈ [K] measure the accuracy of the answers reported by the worker. Thus, even though the
mechanism has only estimates of the accuracy of the workers’ answers and the estimates are indeed obtained using the
answers of the peers and their trustworthiness but the consistency property of these estimates ensures the asymptotic
fairness of the mechanism.

4 Simulation Results with Uniformly distributed Proficiencies
In another simulation setting, Ai[k, k] ∀k ∈ [K] were uniformly distributed in ( 1

K , 1]. Figure 1a compares the reward
distribution in the this setting. Observations similar to the former setting (β(5, 1) distributed proficiencies) are made
in this setting as well. The difference is that for the truthful strategy, rewards in the former setting are slightly more
skewed towards the positive side. It is an expected observation because the rewards of truthful workers are shown to
be an increasing function of their proficiencies in the proof of Theorem 1 and the proficiency distribution in β(5, 1) is
indeed skewed. Figure 1b shows that robustness of our mechanism with respect to the number of shared tasks when
proficiencies are uniformly distributed. The observation here is also very similar to that discussed in the paper for
β(5, 1) distributed proficiencies.

Permutation

(a) Distribution of rewards for workers with different proficiencies
playing different strategies

Permutation

30 40 

(b) Average reward of workers playing different strategies under
different number of shared tasks

Figure 1: Simulation Results with uniformly distributed proficiencies
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5 Amazon Mechanical Turk Study
Any conclusive study on the effects of reward mechanisms requires a large budget and needs to be conducted over
a long period. Such a study is beyond the scope of this paper. We performed a limited scale study on Amazon Me-
chanical Turk to make some preliminary observations about the ease of implementing the mechanism and workers’
response to the mechanism. We created some synthetic tasks which resemble tasks requiring human intelligence (nat-
ural language understanding) and elicited the answers of the crowd on MTurk with and without our reward mechanism
in place. The advantage of using synthetically generated tasks was that we had access to ground truth and could judge
the performance of workers with and without our mechanism objectively. The structure of our task (named ‘story dis-
entanglement task’) was the following : we mixed a few sentences from different real news stories into one paragraph
and asked the workers to count the number of news stories in the paragraph. Solving this task requires identifying the
context of different sentences and whether they are related. The number of sentences in paragraphs was kept indepen-
dent of the number of stories, making it harder to guess by just looking at the paragraph length. We asked workers
to give a binary answer (‘Yes’ if the number of stories is less than 3 and ‘No’ otherwise). We also asked them to
identify the sentences belonging to different stories. We will discuss only the binary answers of the workers. Each HIT
corresponds to giving an answer for one such paragraph. We conducted the experiments under two settings.

• In the first setting, workers were told that they would be paid 0.03$ per HIT and there would be additional perfor-
mance based payments without discussing a specific reward rule. We will refer to this setting as the unspecified
reward setting.

• In the second setting, each HIT was worth 0.03$ and we explained our Deep Bayesian Trust mechanism to the
workers in plain English with almost no use of mathematical language or notations. Figures 2a, 2b and 2c show
screen shots of the instructions given to the crowdworkers. We will refer to this setting as the DB Trust setting.

In the DB Trust setting, batches of 80 HITs were designed such that each batch had 40 HITs in common with another
batch to satisfy peer relationship. In both settings, we had 3 workers giving answers for each paragraph, giving us a
total 3 × 480 HITs from 480 paragraphs. We thus collected a dataset of 1440 worker responses on these HITs, 720
in each setting. In total, 129 workers participated in the experiment. We judge the mechanism on two most important
criteria. First, the ability to discourage workers from heuristic reporting and second, the ability to get more accurate
answers from crowd.

Observations
1. Figure 3 compares the time workers spent on solving the tasks in the two settings. The fraction of HITs that were

given very little time has significantly decreased with our mechanism and the fraction of HITS that were given
more time has significantly increased (the green distribution with dots is more skewed towards the right side as
compared to the red distribution with slashes, which is more skewed towards the left). This can be interpreted as
a success in eliciting effort from the crowd and discouraging low quality/heuristic reporting. We used a browser
based JavaScript solution to measure the actual time spent on solving tasks to get tight estimates of time spent in
the DB Trust setting, without workers being aware of it. Amazon uses the difference between time of accepting and
submitting a HIT as estimates of time spent, which (even after filtering very large values) tend to be highly inflated.
As one can see, even with such tight estimates in the DB Trust setting, the time spent by workers is better.

2. The average accuracy of workers was found to increase from 70.86% in the unspecified setting to 79.17% in the
DB Trust setting.

3. The average accuracy of all responses was also found to increase from 75.69% to 79.17% with our scheme.
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(a) Description of Payment Scheme

(b) Task Instructions

(c) Sample Task

Figure 2: Mechanical Turk Task
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Unspecified

DB Trust

Figure 3: Time Spent on HITs
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