

□ The proposed system can be implemented as a smart contract as shown by Goel et al. in Infochain: A decentralized, trustless and transparent oracle on blockchain (IJCAI 2020).

RESEARCH QUESTIONS

- Deer-prediction is a well known method to elicit effort and truthful information from rational agents.
- □ But what happens when the agents have outcome dependent lying pay $\frac{1-p}{n}$ if y = y'incentives? Does this method still work?
- □ How large do the incentives have to be, to counteract the lying incentives, and is the approach economically feasible?

The Peer Truth Serum for Crowdsourcing

(Radanovic, Faltings and Jurca, 2016)

answer submitted by agent = yanswer submitted by another agent (peer) for the same question = y'

Payment Rule:

charge 1 otherwise.

where p is the relative frequency of y in the answers collected for statistically similar questions.

Making truth-telling an equilibrium

Theorem : Given δ and a scaling constant $\alpha > \frac{K}{n \cdot \delta}$, the truth-telling strategy profile is a strict equilibrium if $\beta \leq 0$, and is a $(\frac{\beta \cdot \kappa}{n \cdot \delta})$ approximate equilibrium if $\beta > 0$.

where, δ is an approximation of δ^* , such that $\delta = \delta^* + \beta$

 δ^* is the self-predictor value: a measure of correlation strength between the observations of agents.

Theorem : The expected relative saving in payments made in the truthtelling equilibrium is at least $Pr(\textcircled{0}) - \frac{1}{n \cdot \delta}$, where Pr(0) is the actual probability of a random observation being .

► Relative saving is always positive if $n > \frac{1}{Pr(\bigcirc) \cdot \delta}$

 \triangleright Approaches the optimal relative saving of $Pr(\bigcirc)$ as $n \to \infty$.

Eliminating denial strategy equilibrium

denial strategy = always reporting 🙄 regardless of the true observation.

Theorem : Given that for any f > 0,

- a) an *f*-fraction of agents are honest,
- b) the remaining 1 f adopt the denial strategy, and
- c) it holds that $\alpha > \frac{\alpha}{n \cdot \delta_c}$

then the truth-telling strategy is strictly best response if $\beta_c \leq 0$, and is $\left(\frac{\beta_{c}\cdot\kappa}{n-\delta}\right)$ -approximate best response if $\beta > 0$.

Numerical Experiments

Response Time Data

Throughput Data