
• More training data does not necessarily lead to a fairer model.

• Base rates and group sizes are not the only determinants of unfairness; the 
disparity does not necessarily decrease when we balance these between races. 

• Depending on the time of training data and when the model is applied, fairness 
evaluation varies significantly.

• Adding race as an attribute may increase unfairness without increasing accuracy, 
but adding neighbourhood characteristics increases fairness in our experiments.

• For some types of offense, fairness is much worse than other types of offense.

• Training separate models for different races is not always favorable for the minority.

• Data-centric interventions often affect fairness metrics but not accuracy metrics.

• Fairness and accuracy estimates often vary significantly under distribution shift.

Main Contribution
• Research-ready large criminal cases dataset, for research in algorithmic fairness and beyond.

• 1.5 million instances.

• Variables such as prior criminal counts and recidivism outcomes (including violent recidivism). 

• Large number of samples from five racial groups.

• Other attributes: sex, age (at judgment and first offense), neighbourhood characteristics obtained from 
census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing 
etc. Pseudo-identifiers for judge, county and zipcode.

Summary of the Dataset

WCLD: Curated Large Dataset of Criminal Cases 
from Wisconsin Circuit Courts
Elliott Ash, Naman Goel, Nianyun Li, Claudia Marangon, Peiyao Sun

• WCCA API indexes public case records and docket information from 72 county courts.

• Collected records of cases filed from 1970, through 2020. 

• 11M records (2.5M criminal).

• Constructed a dataset for machine learning by using a combination of variables that were directly 
available in the records and calculating unavailable variables using various techniques.

• For example, created prior criminal counts and recidivism outcomes by performing database 
search over the records. Used GPT-4 for labelling violent crimes given the charge descriptions.

Dataset Construction

StrengthsTable 1: Summary of Wisconsin Circuit Courts Dataset

Full sample Caucasian African
American Hispanic Native

American Asian

Sample size 1,476,967 964,922 333,036 101,607 63,862 13,540
Sample share 65.33% 22.55% 6.88% 4.32% 0.92%
Recidivism (if observed) 42.21% 40.34% 46.43% 38.76% 56.47% 37.80%
Sex
Male 80.40% 79.05% 83.47% 88.88% 69.65% 87.57%
Age
Below 30 51.38% 49.45% 54.13% 56.91% 53.71% 68.60%
30 to 60 47.44% 49.09% 45.17% 42.61% 45.58% 30.85%

Case type
Felony 32.18% 30.76% 39.98% 21.09% 29.80% 36.39%
Misdemeanor 43.04% 43.67% 43.14% 34.12% 47.55% 40.89%
Criminal Tra�c 24.78% 25.57% 16.88% 44.79% 22.66% 22.73%

to de�ne other follow up periods that can be used to study the
implications for fairness.

Decision Making Stage. Another aspect we considered is the
stage at which the risk estimate is intended to be used. Risk assess-
ment tools can be applied at all stages in the criminal justice process:
from pretrial, sentencing to parole planning. The prediction task
for each stage can be di�erent. For this paper, we assume that the
recidivism risk score is intended to inform the judges at the stage of
sentencing, therefore we decide that the task is to predict whether
the defendant will commit a crime within two years from the date
of judgment. ProPublica assumed a pre-trial stage [39].

Missing Outcomes due to Incapacitation. Finally, we had to
de�ne which cases have missing outcomes in our dataset. It is often
true that the observed data is a consequence of previous human
decisions. In our case, whether we observe recidivism or not is
a�ected by the decisions of judges. In some settings, it is relatively
straightforward to identify cases with a missing outcome from
the original data. For example, drivers that are not searched by the
police or defendants who are denied bail. However, in our prediction
task, identifying cases that have a missing outcome is not trivial
because defendants serve di�erent sentence lengths. Assigning a
missing outcome to every case with a sentence throws away a lot
of useful data.1 Yet extending the follow up period for two years
after the assigned sentence period instead of the judgment date is
also problematic because defendants often serve more or less than
the assigned sentence. Since there is not a comparable data source
that has the exact jail record of every defendant in Wisconsin, we
don’t observe the actual sentence length. Moreover, the sentence
itself could a�ect probability of recidivism. Further, the defendants
who receive sentences are a selected group, so there is the issue of
selective labeling explored by Lakkaraju et al. [47].

There is no consensus in the literature about how to deal with
this problem.We assess the importance of these decisions as follows.
We use a cuto� for sentence length, of 180 days, such that we don’t

1To see this, consider three defendants who stay in jail for one year, for 22 months,
and for 2 years after judgment. The �rst defendant has 1 year left to reo�end in the
follow-up period, the second has only 2 months, and for the third, we can not observe
recidivism in the follow-up period of 2 years at all.

have to throw away a lot of useful data and still leave enough time
in the follow-up period for the defendant to reveal crime potential.
Above this cuto�, we treat the defendants’ outcome as missing (and
hence dropped from the dataset) even if they do not reo�end within
the follow-up period. We explore this issue further in Section 4.1.

Descriptive Statistics
We have case records from as early as 1970, but the records in earlier
years tend to be incomplete and the number of cases much smaller.
Therefore, we only keep the cases from 2000 for further analysis. It
only means that the rows in the dataset that we use for training and
testing machine classi�ers are only those cases that appear in the
courts from 2000. The pre-2000 information for such cases is still
included in the form of prior criminal count of defendants. Given
the 2 year follow-up period, we exclude cases that are disposed
after 2018 since there is not enough time to observe recidivism.
We also excluded dismissed cases that do not result in conviction.
We also had to delete records of defendants from the main dataset
that do not have sex and/or race data available. Finally, we exclude
cases that only have forfeiture (non-crime) charge. Table 1 presents
summary statistics of themain dataset thus constructedwith around
1.5 million cases from 2000 to 2018. There are �ve race groups in
the dataset, with around 65% Caucasian, 23% African American and
7% Hispanic. The ‘Asian or Paci�c Islander’ and ‘American Indian
or Alaskan Native’ groups are abbreviated as ‘Asian’ and ‘Native
American’ respectively. The proportion of male criminals (80%) is
signi�cantly higher than female, and most cases are committed at
a younger age (below 60). The recidivism rate is the highest (⇠56%)
with Native American. Misdemeanors are the most frequent crime
type except for Hispanic with criminal tra�c (45%) being the most
common crime type.

Other Datasets in Criminal Justice
Our dataset provides a valuable complement to the standard datasets
used in the literature on algorithmic fairness of recividism predic-
tions. The standard COMPAS data set used in algorithmic fairness
literature, assembled by ProPublica [39], has 7000 observations from
a single court (Broward County, Florida) over two years (2013 and

Addresses several limitations of previous datasets like COMPAS/ProPublica:

üLarge size.

üLarge number of samples from five racial groups.

üData from different courts.

üData from 72 counties.

üMore attributes.

üLess variance.

üData from a long period of time (1970-2020).

Temporal Factors

LimitationsType of Offense

Race and Zipcode Demographic Data 
* Zipcode level demographic data
(from census):

· Population density · 
Proportion who attended 
college · Proportion eligible for 
food stamp · African American 
population share · Hispanic 
population share · Proportion 
of male · Proportions who live 
in rural and urban area · 
Median household income

A separate classifier for each 
offense type is trained on data 
from that offense type. The 
performance of the classifiers are 
then observed on respective 
offense types. For comparison, 
the performance of a joint 
classifier, that is trained on all the 
data and uses offense type as a 
predictor, is also shown by 
offense type. 

Summary of Key Observations

• Biases encoded in various variables is a fundamental limitation, difficult (or perhaps 
impossible) to address in any dataset despite coverage and size.

• Known biases and limitations discussed in the paper in detail.

• Must be considered while using the dataset and drawing conclusions.

Dataset Availability
• Dataset is freely available at:

http://clezdata.github.io/wcld/

• License: CC-BY-NC-SA 4.0

• Restricted to academic research use.

For felony and misdemeanour o�ense, unfairness is relatively small
and is often in the reverse direction (i.e. African Americans are not
the disadvantaged group). When we train separate classi�ers by
o�ense type, this trend continues. We also observe that for criminal-
tra�c classi�ers, the unfairness is less than the unfairness in the
joint classi�er. The overall accuracy and AUC are not very di�erent
for joint and separate classi�ers for any of the three o�ense types.
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Figure 7: O�ense Type SeparatedClassi�ers: A separate classi-
�er for each o�ense type is trained on data from that o�ense
type. The performance of the classi�ers are then observed on
respective o�ense types. For comparison, the performance
of a joint classi�er, that is trained on all the data and uses
o�ense type as a predictor, is also shown by o�ense type. 95%
con�dence intervals are constructed by multiple train and
test splits.

Figure 8 shows the results when separate classi�ers are applied
on the reserve set (data from all o�ense types). We observe that the
classi�er trained only on criminal tra�c data is more unfair overall
compared to the joint classi�er and other separate classi�ers.

5 CONCLUSIONS AND FUTUREWORK
While it is well-known that data-centric factors in�uence algorith-
mic fairness in complex ways, research in algorithmic fairness is
still very much algorithm-centric and depends on a few benchmark
datasts for limited empirical evaluation. In this paper, we take a
rigorous empirical approach towards understanding the e�ect of
various data-centric factors on algorithmic fairness. We construct
a new large scale dataset for recidivism prediction and show how
it can be be used for the purposes of data-oriented analysis. Our
results suggest that such data-centric factors should be explicitly
taken into account while designing and evaluating algorithms. We
also observe that the e�ect of data-centric factors on fairness met-
rics look very di�erent from their e�ect on accuracy metrics in
all the experiments, further suggesting that data-centric factors in
fairness deserve independent attention.

In this paper, we studied data-centric factors like the training
data size, group proportions and base rate di�erence, temporal
aspects of data curation, the availability additional variables, data
from di�erence o�ense types etc. A further theoretical analysis
will be useful to understand the observations more. It will also be
interesting to extend the idea further by studying other data-centric

Figure 8: O�ense Type Separated Classi�ers Applied to a
Target Distribution with All O�ense Types: O�ense speci�c
classi�ers are trained with data from respective o�ense types
only. The performance of the classi�ers are then observed on
reserved target distribution with all o�ense types. For com-
parison, the performance of a joint classi�er, that is trained
on all the data and uses o�ense type as a predictor, is also
shown on the target distribution. 95% con�dence intervals
are constructed by multiple train and test splits.

factors not studied in this paper. These may include, for example,
the biases due to selective labeling, label noise, geographical factors,
judge characteristics in past decisions etc. In the paper, we used
two base classi�ers (logistic regression and XGBoost). In future
work, it may be interesting to study empirically how various data-
centric factors interact with common algorithmic design choices,
for example, other types of classi�ers, whether the classi�er is a
deterministic or a randomized one, the type of loss function, type
of fairness metric, fairness enforcing techniques etc.

Finally, while simulations are an excellent way to understand
the fundamentals, the design of simulations should be further in-
vestigated in future work to align them even closer to real-world
scenarios and improve the external validity of the observations.
It would also be interesting to explore how biases in the original
(bigger) dataset may also be considered while creating the auxiliary
datasets from it and while interpreting the results.

We hope that the paper encourages further discussion on open
questions such as: 1) what does good data quality mean in the
context of algorithmic fairness; 2) what are the appropriate evalua-
tion and benchmarking methods for fairness and machine learning
algorithms; and 3) what are the complementary theoretical expla-
nations for the behavior of di�erent algorithms under di�erent
data situations. A better understanding of these issues can lead to
development of fair algorithms that are more robust and suitable
for practical deployment.
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Figure 4: The Role of Time: X axis corresponds to training
datasets from two consecutive years between 2000 and 2018
(e.g., "1" on x axis denotes the training data from the years
2000 & 2001, "2" denotes the training data from the years
2001 & 2002 and so on. The test data comes from the next
two years after a two year gap (e.g. if training data is from
2000 & 2001, test comes from 2003 & 2004.)

need two years to observe the outcome). For example, if we train
on the data from 2010 and 2011, we test the model on the data from
2013 and 2014. This simulates the real-world setting where data
from the past is used for training a model, which is then applied to
make decisions in the future. The reasons for limiting past data to
two years are, for example, limiting the in�uence of older data that
may not be relevant anymore, and unavailability of older data.

We repeat this approach in a moving-window manner between
2000 and 2018, and thus obtain 14 di�erent training sets. We train 14
di�erent models for both LR and XGBoost. In addition to reporting
models’ performance on the data from two subsequent years, we
also report the performance when we apply each of these models
to a reserved data (20% of entire data) that includes all years, to
see the di�erence. This latter case simulates the settings where a
model may be trained on data from a speci�c period of time and
applied across di�erent time periods. The predictors are the same
as in Section 4.2.

Results. The results are reported in Figures 4 and 5 for the two test
settings respectively described above. In both cases, we observe that
while overall AUC is stable across years, the fairness metrics change
signi�cantly. For example, FPR di�erence in Figure 4 goes from 8%
in 2000 to less than 2% in 2018. This shows how unfair machine
decisions can be in di�erent points in time. In Figure 4, when the
test data distribution is �xed and only training data changes, we
observe that models trained on older data are much more unfair.
This is true not only for FPR and FNR di�erences, but also for PR
di�erence. It is also interesting to note that for the LR classi�er,
the FNR di�erence changes sign in later years (going against the
Caucasian group).

The results show that temporal factors in data generation and
curation should be more explicitly considered in empirical research
on algorithmic fairness. For completeness, bias ampli�cation and
overall accuracy plots are also in Figures 10 and 11 in Appendix D.
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Figure 5: The Role of Time: X axis corresponds to training
datasets, as described in the caption of Figure 4 caption. Main
di�erence is that the test data in this �gure is the reserved
data from all the years between 2000 and 2018.

4.5 The Role of Race and Zipcode Level Data
Motivation. Race is the protected attribute according to which we
de�ne fairness. It is often the case that such protected attributes are
hard to obtain in the data (at training and/or test time) or are simply
not allowed to be used in the decision-making process. Previous
works have shown that excluding race from the machine learning
model is not enough to ensure fairness due to correlation with
other attributes. On the contrary, it is known [21] that when base
rates di�er, information about the sensitive attribute is necessary
for optimal decision making under fairness constraints.

Further, neighborhood and zipcode level data are often correlated
with race. We are interested in understanding whether including
detailed zipcode level data could in fact improve fairness (by re-
moving confounders for example) in the base classi�ers. As already
discussed in Section 3, these zipcode level variables include popula-
tion density, proportion who attended college, proportion eligible
for food stamps, African American population share, Hispanic pop-
ulation share, proportion male, proportions who live in rural and
urban areas, and median household income.

Experiment Design/Se�ings. In all experiments, we include sex,
type of o�ense, prior criminal count (for each o�ense type), age
at judgment, and age at �rst o�ense as predictors for both LR and
XGBoost classi�ers. Depending on the experiment setting, we also
include race and/or zipcode level variables in the set of predictors,
and train the model to observe the e�ect on accuracy and fairness.
We thus have four combinations of predictors depending whether
we include race, zipcode level variables, neither, or both.

Results. Figure 6 shows the fairness and performance metrics for
each set of predictors. We can make two interesting observations.
First, including zipcode level variables improves fairness for all four
fairness metrics and both types of classi�ers. This is di�erent from
the �nding in Jabri [37], where in the COMPAS dataset including
neighborhood information reduced fairness.

Second, including race as a predictor has a signi�cant negative
e�ect on fairness. In our dataset, giving the model information
on race increases the proportion of errors that disadvantage black
defendants. We note, however, that this observation should be inter-
preted with caution. Including race as a predictor may not always
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Figure 6: The Role of Including Race and Zipcode Level Data
as Additional Predictors in LR and XGBoost. 95% con�dence
intervals are constructed by multiple train and test splits.

lead to more unfairness, as it depends on the data generation mech-
anism (see e.g. [19] for a causal graphs based analysis of this issue).
For overall accuracy and AUC, there is a marginal improvement in
the case of XGBoost with more predictors.

4.6 Separate Classi�ers Trained on Data from
Di�erent Races and O�enses

Motivation. Instead of merely adding race as one of the predic-
tors, one could train separate classi�ers for each racial group, using
only data from the respective racial group. On one hand, sepa-
rate classi�ers get more �exibility and can minimize loss for each
group separately (following a best-e�ort principle). This can ben-
e�t minority groups compared to a joint classi�er that minimize
loss for the overall population dominated by the majority group.
On the other hand, by training separate classi�ers, we also reduce
the amount of data that is used for training each of the separate
classi�ers. This may hurt both groups compared to a joint classi�er
trained on overall more data, since there could be shared predictive
relationships across the groups.

Similar arguments apply to the idea of training di�erent classi-
�ers by o�ense type.

Experiment Design/Se�ings. We train separate classi�ers for
each race and for each o�ense type. Before dividing data by race/o�ense
type, we reserve 20% of the overall dataset that represents the gen-
eral distribution. We divide the remaining data by race/o�ense
type. For each of these new datasets, we then have a 70/30 train
and test split. We thus have �ve separate classi�ers for each of the
�ve race groups, and three classi�ers for each of the three o�ense
types. For race-speci�c classi�ers, we include sex, o�ense type,
prior criminal count (for each o�ense type), age at judgment, and
age at �rst o�ense as predictors. For o�ense-speci�c classi�ers, we
don’t need o�ense type as a predictor. Race is not included as a
predictor in this section, but race-speci�c classi�ers already include
race information since the classi�ers are di�erent for the two races.

Results. 1) Race-Speci�c Classi�ers: Table 3 shows the performance
of the two classi�ers trained on data from African American and
Caucasian groups, respectively. Table 6 in Appendix E shows the
same table with 95% con�dence interval. These classi�ers were

applied on test datasets from their respective groups.3 For compari-
son, we include the performance metrics of the joint classi�er that
was trained on data from all groups, and applied on data from each
group. For brevity, we only show the performance metrics on the
two groups. The joint classi�er did not include race as a predictor.

Compared to the joint classi�er, race-speci�c classi�ers (both
XGBoost and LR) decrease FPR and PR and increase FNR for the
Caucasian group. At the same time, they increase FPR and PR and de-
crease FNR for the African American group. The accuracy and AUC
increases only marginally for the African American group with a
race-speci�c classi�er, but stay almost the same for Caucasian. This
suggests that the African American group may bene�t in terms of
fairness (error rate di�erence) when we include patterns in the data
from the other group in a joint classi�er. A separate classi�er for
the minority doesn’t necessarily make the group better-o�.

Table 3: Performance of Joint Classi�er (Trained on Data
From All Racial Groups, Without Race as Predictor), Com-
pared to Separate Classi�ers (Trained on Race Level Data)

LR XGBoost

Caucasian African
American Caucasian African

American
Joint
Classi�er
Accuracy 0.6560 0.6206 0.6648 0.6459
AUC 0.6825 0.6806 0.7044 0.7033
FPR 0.1479 0.1667 0.2159 0.2454
FNR 0.6334 0.6244 0.5113 0.4792
PR 0.2363 0.2638 0.3261 0.3734
Af. Am.
Classi�er
Accuracy 0.6494 0.6363 0.6486 0.6518
AUC 0.6741 0.6834 0.6855 0.7087
FPR 0.2472 0.2532 0.2818 0.2945
FNR 0.5043 0.4913 0.4549 0.4102
PR 0.3471 0.3718 0.3877 0.4315
Caucasian
Classi�er
Accuracy 0.6526 0.6126 0.6652 0.6352
AUC 0.6827 0.6778 0.7043 0.6921
FPR 0.1280 0.1453 0.1975 0.2284
FNR 0.6711 0.6676 0.5375 0.5228
PR 0.2091 0.2320 0.3046 0.3437

2) O�ense Type Speci�c Classi�ers: The results for o�ense-speci�c
classi�ers are shown in Figure 7. The results were obtained by
applying the separate classi�ers for a given o�ense type on the
test data from the respective o�ense type. For comparison, we also
include the performance of the joint classi�er on each o�ense type.
The �rst notable observation in Figure 7 is that, even for the joint
classi�er, most unfairness exists in the criminal tra�c o�ense type.
3Ideally, group-speci�c classi�ers would be applied on the respective group only. For
completeness, we include performance metrics of the classi�ers when applied on
reserved test data from the other group as well. These numbers have been greyed out
in the table to avoid confusion.

http://clezdata.github.io/wcld/

